

Find full paperback on Amazon:

https://www.amazon.com/Vintage-Upcycling-Raspberry-Arduino-Makers/dp/
849414121X/ref=sr_1_2?dchild=1&keywords=miglino&qid=1609785525&sr=8-2

Kindle ebook available, free on Kindle Unlimited:

https://www.amazon.com/Vintage-Upcycling-Raspberry-Pi-Arduino-ebook/dp/
B08RJ85SQ1/ref=tmm_kin_swatch_0?
_encoding=UTF8&qid=1609785525&sr=8-2

https://www.amazon.com/Vintage-Upcycling-Raspberry-Arduino-Makers/dp/849414121X/ref=sr_1_2?dchild=1&keywords=miglino&qid=1609785525&sr=8-2
https://www.amazon.com/Vintage-Upcycling-Raspberry-Arduino-Makers/dp/849414121X/ref=sr_1_2?dchild=1&keywords=miglino&qid=1609785525&sr=8-2
https://www.amazon.com/Vintage-Upcycling-Raspberry-Pi-Arduino-ebook/dp/B08RJ85SQ1/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=1609785525&sr=8-2
https://www.amazon.com/Vintage-Upcycling-Raspberry-Pi-Arduino-ebook/dp/B08RJ85SQ1/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=1609785525&sr=8-2
https://www.amazon.com/Vintage-Upcycling-Raspberry-Pi-Arduino-ebook/dp/B08RJ85SQ1/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=1609785525&sr=8-2

Vintage Upcycling
With Raspberry Pi and Arduino

Enrico Miglino

Free Preview

Copyright ©2020 Ediciones Baleares
all right reserved

ISBN-978-84-941412-1-8

“Vintage Upcycling With Raspberry Pi and Arduino”

Copyright © Ediciones Baleares 2020
Av.da Miguel Hernández 44 2/D
03700 Dénia (Alicante) Spain

e-mail edbaleares@gmail.com
All rights reserved. No part of the contents of this book may be reproduced, transmitted in any form or by any
means, or translated without the written permission of the publisher.
This book is provided “as-is” and expresses the authors’ views and opinions.
The views, opinions, and information expressed in this book, including URL and other Internet website
references, are subject to change without notice.
ISBN 978-84-941412-1-8
Editorial Production: Ediciones Baleares
Copyeditor: Furio Piccinini
Proofreader: Maria Antonietta Ricagno
Cover: Furio Piccinini
Photos: Enrico Miglino

Table of Content

Preface II
Acknowledgments III
Introduction IV
Radio Magic 6

5.1 A First Musical Project 6

5.2 Hacking the Radio Tuner 8
The Tuner Mechanism 9

5.3 The New Components 9

5.4 The Control Board 12

5.5 The Arduino Sketch 14
LED Activity 16

The Rotary Encoder 18

The Run/Standby Pushbutton 20

I

Preface

A lot of fun and challenging too
The Shed magazine is predominantly a print magazine and we have been privileged to

have published most of the articles here in this publication by Enrico Miglino.
These upcycling projects have been very well received by our readers who enjoy their

spare time, making and creating projects for fun or folly. With electronics now playing such a
huge, huge part in our everyday lives, so many more of our readers are enjoying projects of this
type where they can test their skills and expand their knowledge horizons.

All these projects here do just that and we hope you enjoy them as much as our readers
have. To test your skills and have fun doing so is the perfect way to enjoy your leisure time.
There is nothing like creating a project that brings on a smile and makes good use of stylish
antique pieces while using contemporary, easy to access, hardware and software.

These upcycling projects are a perfect match for the electronics hobbyist and for those
that appreciate that many older items still have value, use and a place with us all in the 21st
century.

Enjoy.
Greg Vincent, Publishing editor

The Shed magazine

II

Acknowledgments

If you are reading this book it is also thanks to the support and sponsorship of Project14
and the element14.com community that gave me the possibility and help to create the three
part workshop “Vintage Upcycling”. During the chats with Tariq while preparing the
workshop script, I had the idea of writing this book.

A big thanks also to Greg and The Shed magazine where I published some of the projects
covered by this work.

The presentation of professional schematics and PCB designs was made possible thanks
to the kind sponsorship of Altium Designer, one of the best CAD circuit design applications.

All the 3D printed components shown in these projects were made using filament and
resin 3D printers provided by Elegoo.

III

http://element14.com

Introduction

by Tariq Ahmad
Community manager of Project14 at element14.com

When I think of vintage electronics, what I tend to think of the beautiful craftsmanship on
my parents old Marentz receiver from the 70s accompanied with floor speakers with room
filling sound. Or, maybe a vintage console television with a CRT screen that was 25 inches,
which was bulky even by today’s standards, even if the screen is smaller than what people are
use to. Technology back then was not meant to be tucked away or hidden, it had to be made as
beautiful as any piece of furniture in the room. Nowadays, the life cycle for electronics is much
shorter, and the footprint it leaves is not so drastic.

When Enrico, approached me about doing a workshop around an old rotary phone, I
recalled a rotary phone that I fell in love with at a neighbours house growing up. Bringing back
something old and familiar, isn’t just a shameless plug for nostalgia, it’s a return to something
beauty lost. For all its sophistication, today’s technology has a short life cycle, and an almost
disposable quality. This was less the case 40 or 50 years ago, has time flown by so much since
then? The upcycling workshop that Enrico proposed, felt almost Proustian, in its search for
time regained. Every piece of vintage technology recalled memories from era lost but not
forgotten.

The idea for having workshops on the element14 community came from a desire to make
electronics projects accessible to everyone. That was one of the missions of the Project14
project competitions held on the element14 community. With Enrico’s support, we got
together to arrange a series of workshops based on projects in this book, that involved
upcycling Vintage Electronics.

What is upcycling you might ask? Upcycling, also known as creative reuse of existing
material or products perceived to be of great quality or aesthetic value. For electronics
hobbyists, that usually means using something like a Raspberry Pi or an Arduino, in order to
make something old, new again. The idea for the Vintage Tech Workshop.

IV

The idea for this workshop was to inspire people to take cool vintage appliances and
repurpose them using a Raspberry Pi or an Arduino. If you are a fan of electronics, you likely
have some older electronics lying around that are in need of a second life. One of the goals of
upcycling is to prevent wasting material that could be potentially useful by making use of it. By
doing so, you reduce the consumption of new raw materials in effect creating a new product;
thus, reducing energy usage, air and water pollution, and even greenhouse gas emissions.

Following the 3 part workshop series on Vintage Upcycling with Raspberry Pi and
Arduino that Enrico hosted, the members voted on a Recycle & Retrofit competition in the
Project14 program on element14 community. Project14, is a member-driven program on the
element14 community where members come up with ideas for competitions, vote on the
competitions they want to participate in, and then decide the winners of those competitions.
In fact, the first competition ever run on Project14 was Techno Toys, an upcycling
competition, and throughout the programs lifespan, many of the most memorable electronics
projects, involved upcycling.

Upcycling connects the past to present in a way that honours what we cherish from
vintage electronics while improving it to make it contemporary using modern electronics such
as a Pi or an Arduino. One of the goals of upcycling is have a more “creative” version of
recycling, not only designing, adapting and making usable something vintage, while adding
more value, and a brand-new charm. To “upcycle” an item, is to essentially update, modernise
or deconstruct it. Upcycling is about aesthetics as well as substance. Upcycling can make what
you once loved, contemporary while not losing any of its old world charm.

If you’re new to electronics projects, or upcycling, we hope this book inspires you to try
your hand in electronics project. If you’re more experienced, we hope that the projects in this
book inspire you to take on an upcycling project and make something beautiful. In this way we
can make what is old, new and sustainable at the same time.

V

CHAPTER 5

Radio Magic

5.1 A First Musical Project
This project first appeared on “The Shed” magazine issue number 92, September/October

2020 (https://the-shed.nz/) and has been introduced in the second Project14 workshop
“Vintage Upcycling” by https://www.element14.com/community/community/project14/
hardwarehacking/blog/2020/06/17/radio-magic-sounds-nice-part-1

Repository link: https://github.com/alicemirror/RadioMagic
Radio Magic is the name of a series of three projects completing the upcycling series of

this book. This upcycling of a 1960’ Bush Radio names the three projects series; it is a path I
started last year to make music with vintage technologies integrated to the most recent
hardware and software devices available today.

As already mentioned in this volume, with the upcycling projects I tried to propose ideas,
some methodological suggestion and – hopefully – inspiring other makers to hack, change,
rebuild and adapt the projects to their vintage devices. Consider this project as a proposal to
upcycle an old transistor radio to something new, almost any kind of radio of the same period.

How can an old transistor radio be used to make music?
Electronic music can be created with digital or analogue synthesisers: it is an electronic

device able to generate some kinds of a waveform in the audible range (from 20 to 20.000
Hz). There are a lot of functions that can be added to a simple waveform to apply any kinds of
effect, chaining together multiple devices or software modules to change the original sound
giving accents, modifying decay, duration, attack and much more.

https://the-shed.nz/
https://www.element14.com/community/community/project14/hardwarehacking/blog/2020/06/17/radio-magic-sounds-nice-part-1
https://www.element14.com/community/community/project14/hardwarehacking/blog/2020/06/17/radio-magic-sounds-nice-part-1

Vintage Upcycling

Indeed, this is not the only kind of approach to electronic music; instead of artificially
generated sounds, we can sample them. In many modern synthesisers, the instruments are
built starting from a real-world sample. A sound sample is the recording of a short sequence of
sounds: a musical instrument, a noisy tool, the sound generated by a percussion, or –why not –
a vintage radio.

7

The author and the radio, a Blue Baby special edition of the BUSH transistor radio, 1960 circa.

Radio Magic

One of the first music synthesisers was the Mellotron is an electro-
mechanical musical instrument developed in Birmingham, England, in
1963. The instrument is played pressing its keys, each of which pushes a
length of magnetic tape against a capstan, which pulls it across a
playback head. Then as the key is released, the tape is retracted by a
spring to its initial position. Different portions of the tape can be played to
access different sounds. (https://en.wikipedia.org/wiki/Mellotron)

The mid-60’ BUSH radio of which I own a Blue Baby limited edition required some
upgrade to become a sound generator. The interesting aspect of sampling from a radio is the
ability to tune the receiver covering nearby frequencies creating a continuous variation of
random sound and noise.

The possibilities offered to create new and original musical instruments with this method
are limitless; changing the tuning while sampling we can sample a mix of sounds used as the
base to generate an entire set of notes.

5.2 Hacking the Radio Tuner
To hack the tuner to automatically

change the radio station I checked how it
works inside of the radio.

The radio tuning is controlled by a
variable capacitor, a widely used component
in the radios produced for many decades
until the early 70’.

It is not easy operating the right
selection rotating the shaft of the variable
capacitor. The tuning mechanism has a thin
cotton thread connected through a pulley to
the manual knob, increase the rotation for
more precise identification of the desired
band.

8

The tuner mechanism: the variable capacitor to
the left and the tuner knob to the right.

Vintage Upcycling

A variable capacitor is a device whose capacitance may be intentionally
changed mechanically or electronically. Variable capacitors are often used
in L/C circuits to set the resonance frequency, e.g. to tune a radio
(therefore it is sometimes called a tuning capacitor or tuning condenser).

According to the transistor radios technology, the solution described in this project can
be easily applied – with some minor adaptions – to a wide range of vintage radios.

The Tuner Mechanism

The variable capacitor has a large pulley driven by the knob pulley through a cotton thread
doing a complex path. I wanted to gain direct control to the variable capacitor inverting the
functions of the two pulleys.

After opening the radio case I verified that
rotating the variable capacitor pulley the
knob pulley moves without difficulty: this
means that at least in theory this operation is
feasible.
Moving the tuner pulley requires a
considerable precision as the movement
range is less than 180 deg.
I excluded a DC motor because the
mechanism should be able to make very
short increments of the variable capacitor

angle of the shaft; for this reason, I decided to use a geared stepper motor 28BYJ-48 (https://
opencircuit.shop/Product/28BYJ-48-5V-stepper-motor-4-phase-5-wire), an inexpensive 5V
stepper motor.

Due to its reduced dimensions, it is perfect to be added inside of the case of the radio
while the reduction gear gives the slow speed and torque needed to move the tuner pulley.

5.3 The New Components
A considerable part of the case is occupied by the back of the big mono speaker of the

radio.

9

The variable capacitor rotation angle and the
optimal position of the stepper motor.

https://opencircuit.shop/Product/28BYJ-48-5V-stepper-motor-4-phase-5-wire
https://opencircuit.shop/Product/28BYJ-48-5V-stepper-motor-4-phase-5-wire

Radio Magic

To place the stepper motor shaft in-line
with the tuner pulley I had to remove the
speaker.

To use the radio as a sampling device
the only useful output is the audio output, a
3.5 mm jack on top of the radio. Excluding
the amplifier to remove the speaker does not
impact the project expectations.

After removing the speaker I checked
the available space and the thickness of the
case. About 2,5 cm were still available on
top of the tuner. I planned to insert the
stepper motor and an extra pulley inside this
space.

For the movement transmission between the motor and the tuner, I used a 6mm tooth-
belt; the stepper motor should be at the same height of the driven pulley for the right
movement.

The 3D printed parts (left) and the motor connected through the tooth-belt to the second tuner
pulley (right).

10

The large speaker on the case top cover has
been removed to make space for the stepper
motor.

Vintage Upcycling

To drive the tuner shaft, I had a limitation, preserving the original pulley to drive the tuner
knob while the motor changes the position. The solution has been designing with Fusion360
and 3D with the LCD Elegoo Saturn 3d printer (https://www.elegoo.com/collections/
frontpage/products/elegoo-saturn-msla-4k-monochrome-lcd-3d-printer).

I had to take care of the right dimensions as the 12 teeth of the stepper motor should be at
the same height as the tuner pulley, and the added parts should not be higher than 1.5 cm.

To support the stepper motor, I used two separate supports that can be regulated to give
the right tension to the tooth-belt.

Thanks to a small square hole connecting
the battery holder on the back to the radio
circuit, it was possible to replace the battery
holder with the L298 stepper controller
board.
To keep the almost intact the device
exterior, I faced the problem of how to
connect the six wires needed to control the
motor: four for the stepper and two for
powering the L298 controller board.
The tiniest solution I found has been using
an RJ45 plug: I had to make only a small
squared hole on one side of the radio where
I hot-glued an Ethernet plug.
With this solution, a single Ethernet patch
cable was sufficient to connect the radio to

the control board.
The RJ45 cables have eight wires; as the radio needs 9V power (I removed the battery

holder for a battery model no longer available), I used the remaining two wires of the Ethernet
cable to power the radio itself.

11

The new components assembled and
connected to the RJ45 plug on the right side of
the radio.

Radio Magic

5.4 The Control Board
After setting the mechanics and testing the connection and motor working I started

working to the Radio Magic control board. The task of this board is giving visual feedback to
the user moving the tuner with a knob and program it to start moving the tuner between a
range selected by the user.

12

Schematics of the Radio Magic control board. The circuit includes an Arduino Nano that control the
logic of the programmable tuner. Created with Altium Designer.

Vintage Upcycling

As shown in the schematics, the core part of the board is an Arduino Nano controlling the
logic of the tuner. The motor movement and direction are controlled by the Arduino, through
a rotary encoder.

Another feature of the board is the ability to program the tuner setting; when the user
positions the tuner on the desired frequency, pressing the pushbutton of the rotary encoder a
green LED signals the acquired position.

Then the user should rotate the tuner again (no matter the direction) and press the rotary
encoder pushbutton another time.

Programming is set and the motor starts rotating the tuner continuously in both
directions until the rotary encoder knob is not rotated again. A second pushbutton can be used
to temporary stop/start the rotation.

As the feedback of the current position of the tuner is shown accordingly on the radio
gauge of the knob – now driven by the tuner – it was not necessary to add a stop switch to the
extreme sides of the rotation range.

The control board routed PCB (left) and a 3D simulation of the board (right). Created with Altium
Designer.

13

Radio Magic

5.5 The Arduino Sketch
Managing the features seems a simple task but getting the system reactive and fast

required some software solutions that are worth to see in detail. The architecture of the
software manages asynchronously three components: the notification LED, the stepper motor
and the rotary encoder.

The program logic works as a state machine, where every state changes the behaviour of
the components. For example, the rotary encoder will disable the programmed rotation when
it is moved, while the LED blink different according to the state of the program without
blocking the main loop activity.

The snapshot of the program is defined in the RadioStepper structure. It is updated every
loop() cycle.

/**

 * The RadioStepper structure contains the status of

 * all the parameters controlling the behavior of the radio

 */

struct RadioStepper {

 /**

 * The starting position has been selected

 *

The assembled PCB (left) and the control board connected to the radio during the software
development (right)

14

Vintage Upcycling

 * This happens when the user press for the first

 * time the rotary encoder button. From that point,

 * the number of effective steps is counted until

 * the button is not pressed for the second time.

 */

 bool isSelected = false;

 /**

 * When the button has been pressed for the second time, the

 * programmed status indicates that the system is ready to

 * loop the tuner.

 */

 bool isProgrammed = false;

 //! Status enabled when the tuner is looping

 bool isLooping = false;

 //! Current relative tuner position inside a loop

 int tunerPosition = 0;

 //! Looping direction. It is inverted when one of the two limits

 //! is reached

 int loopDirection = 0;

 /**

 * Steps units expressed in number of rotary pulses

 *

 * The units are added algebraically to the counter until

 * the rotary encoder button is not pressed for the second

 * time. At this point the controller is programmed to execute

 * a loop.

 */

 int loopSteps = 0;

 //! Current rotary encoder position

 int16_t encValue = 0;

 //! Current LED non-stop blinking frequency

 //! It is different when looping is stopped by the stepper is

 //! programmed

 int blinkLEDFrequency;

 //! LED status, inverted during the non-blocking blinking mechanism

 boolean isLEDOn = false;

15

Radio Magic

 //! Starting millis to calculate the period for LED blinking in the

 //! non-blocking function

 unsigned long millisCounter;

};

LED Activity

The LED communicates to the user the tuner programming status:
LED off: no programmed motion is active
Fixed light: the tuner starting point is loaded
Blink at 10 Hz frequency: the tuner is moving in the programmed range
Blink at 1Hz frequency: tuner is programmed but in standby mode
The LED status is updated every loop() cycle. The LED blinks depending on the

milliseconds value and the state of the program at that moment.

/**

 * Blink the signal LED once, inverting the status of the LED. This function should

 * be used during uninterruptable LED blinking.

 *

 * The LED status is changed only if the right frequency time has passed else the function

 * do nothing.

 */

void blinkLEDOnce() {

 // Check if it is blink time

 if(((millis() - radioStepper.millisCounter) >= radioStepper.blinkLEDFrequency) &&
radioStepper.isProgrammed) {

 // Invert the status of the LED

 if(radioStepper.isLEDOn) {

 digitalWrite(PROG_LED, LOW);

 radioStepper.isLEDOn = false;

 }

 else {

 digitalWrite(PROG_LED, HIGH);

 radioStepper.isLEDOn = true;

 }

 // Update the counter

 radioStepper.millisCounter = millis();

16

Vintage Upcycling

 }

}

/**

 * Blink the signal LED for a specified period (ms). If the period duration is

 * less than the frequency needed to blink twice, the function do nothing.

 *

 * \param period The blink duration in ms

 */

void blinkLEDPeriod(int period) {

 // Check that the period is at least four times the blink frequency

 if(period / 2 >= LED_FREQ * 2) {

 //! The number of blinks (On/Off) of the LED

 int stepBlink = period / LED_FREQ;

 //! Blink loop

 int j;

 boolean isOn = true;

#ifdef DEBUG

 Serial << "blinkLEDPeriod(" << period << ") stepBlink " << stepBlink <<

 " Frequency " << LED_FREQ << endl;

#endif

 // Loop for the needed period

 for(j = 0; j < stepBlink; j++) {

 // Invert the last LED status and set the LED

 if(isOn) {

 digitalWrite(PROG_LED, HIGH);

 isOn = false;

 }

 else {

 digitalWrite(PROG_LED, LOW);

 isOn = true;

 }

 delay(LED_FREQ);

#ifdef DEBUG

 Serial << " " << isOn;

#endif

 }

17

Radio Magic

 // Reset the LED to off

 digitalWrite(PROG_LED, LOW);

#ifdef DEBUG

 Serial << endl << " END." << endl;

#endif

 }

}

The led blinking is controlled through two functions shown above: blinkLEDPeriod()
that blinks the LED for a predefined period, and blinkLEDOnce(). This function is called
every loop() cycle to invert the last LED status, according to the program state (programming,
standby, stepper running, etc.)

The Rotary Encoder

To control the rotary encoder, I have used the ClickEncode library (https://github.com/
robogeek78/SparkCore-ClickEncoder). The advantage of this library is the use of the timer
interrupt; so the rotation counter is updated independently by the status of the machine, that is
changed accordingly by the interrupt callback function. The main loop() function checks the
state of the encoder at every cycle as shown below.

void loop() {

 // Read the encoder value. Maybe -1, 1 or 0

 radioStepper.encValue = encoder->getValue();

 // Check if the rotary postion has changed (exclude the zero status

 if ((radioStepper.encValue != 0) && (encoderCounter == ENCODER_READINGS)) {

 if(radioStepper.isProgrammed == true) {

 // If the tuner is programmed and the user moves the rotary encoder

 // the programmed status is automatically reset

 setProgrammingStatus(false);

 }

 encoderCounter = 0; // Reset che counter readings

 // Check for the direction (clockwise of conterclockwise)

 if (radioStepper.encValue == ROTARY_CW) {

 radioTuner.step(ONE_MOVE_CLOCKWISE);

 // Update the loop counter (only if programming is set)

 updateLoopCount(ONE_MOVE_CLOCKWISE);

18

https://github.com/robogeek78/SparkCore-ClickEncoder
https://github.com/robogeek78/SparkCore-ClickEncoder

Vintage Upcycling

 } // Clockwise rotation

 else {

 radioTuner.step(ONE_MOVE_COUNTERCLOCKWISE);

 // Update the loop counter (only if programming is set)

 updateLoopCount(ONE_MOVE_COUNTERCLOCKWISE);

 } // Counterclockwise rotation

 } // Rotary encoder has been moved twice

 else {

 if(radioStepper.encValue != 0){

 encoderCounter++;

 }

 } // First encoder reading

 // Check for the rotary encoder button press. The 0 value shown on power-on can't be
selected

 ClickEncoder::Button encButton = encoder->getButton();

 if(encButton == ClickEncoder::Clicked) {

 #ifdef DEBUG

 Serial << "Encoder button clicked" << endl;

 #endif

 if(radioStepper.isSelected == false){

 radioStepper.isSelected = true;

 setProgrammingStatus(false);

 // LED fixed on

 digitalWrite(PROG_LED, HIGH);

#ifdef DEBUG

 Serial << "isSelected true" << endl;

#endif

 } // Button pressed for the first time: start programming the range

 else {

 #ifdef DEBUG

 Serial << "Set prog status true" << endl;

 #endif

 setProgrammingStatus(true);

 } // Programming ended, start looping

 } // Encoder button clicked

 // Check for looping

 if(radioStepper.isLooping == true) {

 radioStepper.tunerPosition += (STEPPER_INCREMENT * radioStepper.loopDirection);

19

Radio Magic

 // Check if the direction should be inverted

 if((radioStepper.tunerPosition == 0) || (radioStepper.tunerPosition ==
radioStepper.loopSteps)) {

 radioStepper.loopDirection *= -1; // Invert the loop direction

 }

 radioTuner.step(STEPPER_INCREMENT * radioStepper.loopDirection);

 }

 // Non-blocking LED blinking, if needed

 blinkLEDOnce();

}

There are three status events modified by the rotary encoder: the encoder button pressed,
the rotation of the encoder while programming a motion range of the tuner, and the rotation of
the encoder when the tuner is programmed.

The Run/Standby Pushbutton

Also, this component acts independently modifying the status of the running program: if
the stepper is programmed and the tuner is moving the motor is stopped, and the LED blinks
slower; when it is pressed again, the motor restart the rotation sequence.

If the pushbutton is pressed when the stepper motor is not programmed, it does not
affect.

The Run/Standby pushbutton is connected the Arduino Nano pin 2 corresponding to the
hardware interrupt IRQ_0.

When an interrupt occurs on this pin the callback function irqLoopButton() is called
automatically regardless of the main loop() execution status.

/**

 * IRQ Vector callback for Nano IRQ 0 (the loop control button pin)

 */

void irqLoopButton() {

 if(radioStepper.isProgrammed == true) {

 detachInterrupt(digitalPinToInterrupt(LOOPER_BUTTON));

 // If the tuner is programmed, change the status of the loop flag

 if(radioStepper.isLooping == true) {

 radioStepper.isLooping = false;

20

Vintage Upcycling

 radioStepper.blinkLEDFrequency = LED_IDLE;

#ifdef DEBUG

 Serial << "LED idle" << endl;

#endif

 } else {

 radioStepper.isLooping = true;

 radioStepper.blinkLEDFrequency = LED_FREQ;

#ifdef DEBUG

 Serial << "LED frequency" << endl;

#endif

 }

 attachInterrupt(digitalPinToInterrupt(LOOPER_BUTTON), irqLoopButton, LOW);

 delay(10);

 radioStepper.millisCounter = millis();

 }

}

21

Finished to write, November 10th, 2020

The Pi Rotary

23

	Preface
	Acknowledgments
	Introduction
	Chapter 5
	Radio Magic

